skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schöffler, M S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A clear experimental signature of the population of the lowest triplet state T 1 3 of the methane dication is identified in a photoionization experiment. This state is populated only in valence ionization and is absent when the dication is formed by core ionization followed by Auger-Meitner decay. For valence ionization, the total internal energy of the CH 3 + fragment, formed during the deprotonation of CH 4 2 + , is evaluated. Notably, the distribution of this internal energy peaks at the same value regardless of the initially populated electronic state of CH 4 2 + . We find that excited electronic states of CH 3 + are predominantly populated with significant rovibrational excitation. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. We use one-photon excitation to promote K -shell electrons of formic acid (which has a planar equilibrium structure) to an antibonding π * orbital. The excited molecule is known to have a (chiral) pyramidal equilibrium structure. In our experiment, we determine the handedness of the excited molecule by imaging the momenta of charged fragments, which occur after its Coulomb explosion triggered by Auger-Meitner decay cascades succeeding the excitation. We find that the handedness of the excited molecule depends on its spatial orientation with respect to the propagation (or polarization) direction of the exciting photon. The effect is largely independent of the exact polarization properties of the light driving the 1 s π * excitation. Published by the American Physical Society2024 
    more » « less